Resources | Altair Multiscale Designer

Altair Multiscale Designer™

Material Model Development Framework

Accurate and Efficient Simulation of Laminated Composites

This webinar presents a complete composites workflow for all industries, the simulation-driven design workflow allows for an efficient process that enables time and money reduction.

Webinars

From Composites Design to Production with Altair HyperWorks

Walk Through the Journey of Advanced Composites with Altair

Watch the on-demand recordings and find out how Altair's composites solutions can help you design and analyze structures ready for production.

Webinars

Efficient Design Certification Calculations with HyperWorks Integrated Composites Stress Toolbox

In this demonstration, you will learn about efficient design and post-processing of complex laminated composite structures.

Webinars

Simulating the Performance of Fiber-Reinforced Injection Molded Parts

In this demonstration we show the full process of manufacturing injection molded parts to component performance in virtual process. The outcome is injection molded parts with desired mechanical performance with minimal experimental testing.

Webinars

Material Characterization of Continuous Fiber Composites

Availability of material data is a major bottleneck in simulating composite structures. Material suppliers’ datasheets or handbook values do not represent the actual properties resulting from the company’s manufacturing processes. On the other hand, doing a complete material characterization through a test campaign is very costly and time consuming. To overcome these issues, accurate multiscale simulation with predictive capability, as provided by Altair Multiscale Designer, can be used in combination with a limited set of physical tests for developing accurate material models. Further, the accurate modeling of the composite nonlinear and failure behavior through the multiscale approach brings the accuracy of composite structural simulations to a new level.

Webinars

Composite Pressure Vessel Design and Simulation

Composite Pressure Vessels (CPV) play an important role in the emerging market for the fuel cell electric vehicles, but there are also numerous more traditional application areas for CPVs. The filament winding process used for the manufacturing of CPVs ties the possible fiber paths to the manufacturing process. Hence, in the design and analysis of CPVs it is important to include both the manufacturing and structural simulation. The webinar shows how Altair software interface with third-party filament winding simulation software to create CPV structural models using different level of details according to analysis needs. The use of multiscale material modeling provides means for accurate damage and failure predictions of CPVs.

Webinars

Efficient Simulation of 3D Printed Lattice Structures

3D printed lattice structures increase the design freedom in areas of the design where, for example, the full stiffness of the material is not needed, or a specific anisotropic material behavior is beneficial. At the same time the high geometric complexity on a scale below the standard modelling element size makes it extremely difficult to include all anisotropic effects in the standard CAE model and keep the same numeric efficiency together with the same accuracy of results. Using multiscale approaches like Altair Multiscale Designer to link microscale geometric features with a standard macro CAE model combines both scales in a highly efficient way and enables the numeric efficient and highly accurate simulation of lattice structures on component and assembly level.

Webinars

Accelerating the Development of Highly Optimised EV Composite Structures through Multiscale Technology

James Eves, Team Manager at Altair presents at the UK e-Mobility seminar 2019. Multiscale methods to speed up the composite design process. Providing confidence in early design studies to improve the predictivity of final design evaluations.

Presentations, Videos

Empowering Composites Innovation with Simulation

Markku Palentera, Director of Global Composites Business Development at Altair, delivers a presentation outlining Altair's composite design and analysis portfolio and details how manufacturers leverage these tools to empowering composites innovation through simulation.

Download the Presentation Slides

Videos

JEC World 2019 Conference - Empowering Composites Innovation with Simulation

Altair hosted a conference at the JEC World composites expo in which leading innovators across multiple industries discussed how they leverage computer-aided engineering (CAE) simulation software to design, optimize, and validate their composite structures.

Videos

Virtual Material Characterization Using Multiscale Technology

Jens Bold, Structural Analysis Engineer from Boeing Research & Technology, delivers a presentation on virtual material characterization using Altair Multiscale Designer

Download the Presentation Slides

Videos

Fiber Patch Placement Technology

Neven Majic, Executive Vice President of Cevotec GmbH discusses the use of fiber patch placement technology to produce additive manufactured composite parts.

Download the Presentation Slides

Videos

Solar Car Challenge: Pushing the Boundaries using Composites Optimization

Raphael Gerard, Design Engineer at Gurit, discusses the use of composite optimization with Altair OptiStruct to reduce weight and increase performance in a solar car challenge.

Download the Presentation Slides

Videos

Altair HyperWorks Brochure

Altair HyperWorks is the most comprehensive, open architecture CAE simulation platform in the industry, offering the best technologies to design and optimize high performance, weight efficient and innovative products.

Brochures

Multiscale Designer, A Multiscale Material Model Development Framework within HyperWorks

Presentation by Markku Palanterä, Director of Global Composites Business Development at Altair.

While many multiscale modeling frameworks exist, Multiscale Designer provides an unmatched combination of computational efficiency and predictive accuracy. Instead of implementing direct homogenization (accurate but computationally inefficient) or some other classical homogenization method (computationally efficient but inaccurate) Multiscale Designer utilizes 3D FEA Unit Cells with a Reduced Order Model (ROM) technique that allows for BOTH predictive accuracy and computationally efficiency.

ATC Presentations, Videos

Development of Super Lightweight Pedal Brackets for Mazda Motor Corporation

Presentation by Hideyuki Inaba, Asahi Kasei.

Asahi Kasei fuses topology optimization technology and resin design technology, and developed superlight weight pedal bracket for Mazda Motor Corporation. Although the metal brake bracket for the current MX-5 is lightweight, we could propose a lightweight design that is reduced by over 80% by optimizing it for plastic. In addition, we proposed a very small and super lightweight plastic design for brake pedal bracket, clutch pedal bracket and clutch pedal for newly developed models. This time we will introduce the breakthrough design of these parts and present a development history

ATC Presentations, Videos

Efficient and Accurate Material Engineering

The focus of the seminar is in introducing Altair Multiscale Designer, a framework for efficient and accurate multiscale modeling and simulation of composite and other heterogeneous materials. The development and validation of multiscale material models against experimental test data is presented. The session also features a case study on the development of an ultralight plastic replacement for a metallic automotive part with the help of topology optimization.

Presentations recorded at the Global ATC in Paris, France on October 18, 2018.

ATC Presentations, Videos

Altair Multiscale Designer Webinar: Taking Material Modeling to the Next Level

Multiscale modeling of composite materials has become a viable solution to reduce the amount of physical testing needed for accurately material characterization and to better assess the nonlinear material behavior and failure mechanisms in structural analysis. Whether you are working with high-performance continuous fiber-reinforced composites, injection molded short fiber, or even reinforced concrete, Altair Multiscale Designer provides accurate, efficient solutions for the development of multiscale material models and simulation parts manufactured from heterogeneous materials. This webinar gives an overview of Altair Multiscale Designer capabilities including new features now available in the latest release.

Webinars

Improving Composite Design and Simulation Efficiency with Multiscale Designer

Dr. Jan-Philipp Fuhr - Managing Partner, Cikoni talks about developing a methodology to analyze and predict composite matrix and fiber failure using Altair OptiStruct and Multiscale Designer resulting in improved accuracy and simulation efficiency of their simulations.

Customer Stories, Video Testimonials

Multiscale Designer Product Video

Multiscale Designer can help achieving more accurate and cost saving results by looking into the individual constituent of composite materials. The tool is well suited for woven, short and long chopped fiber composites and integrates with Altair's solvers OptiStruct and RADIOSS, as well as other commercial codes.

Videos

Altair Aerospace: FE Model Setup and Validation

This webinar will cover a brief overview of all simulations done on an Altair benchmark airplane wing. All steps from CAD to CAE are discussed, starting with the generation of the geometry, including midsurface generation to meshing and mapping CFD results. The presentation concludes with post-processing and automated report generation.

Webinars

Altair Multiscale Designer Datasheet

Altair Multiscale Designer is an accurate and efficient tool for the development of multiscale material models and simulation of parts manufactured from any heterogeneous material, such as continuous and chopped fiber composites, honeycomb cores, lattice structures, reinforced concrete, and soil and bones.

Datasheets

Towards Efficient Composite Pressure Vessel Design

Competing future vehicle concepts have drives using clean energy stored in batteries or hydrogen. On-board storage of high-pressure hydrogen gas to supply fuel cells needs weight-efficient pressure vessels utilizing composite materials, that operate safely and reliably under challenging thermo-mechanical service conditions, be affordable and meet standards. Partnering with the Altair Composites Team, CIKONI identified the benefits of Altair Multiscale Designer™ to increase simulation efficiency by its virtual material characterization to create accurate and reliable material models for structural simulation. They applied Multiscale Designer, Altair OptiStruct and Altair ESAComp interfaced with a third-party filament winding simulation package to handle the simulation process.

Customer Stories